
Tracer: руководство пользователя

Денис Юричев
<dennis@yurichev.com>

cbnd

c○2013, Денис Юричев.
Это произведение доступно по лицензии Creative Commons

«Attribution-NonCommercial-NoDerivs» («Атрибуция — Некоммерческое использование — Без
производных произведений») 3.0 Непортированная. Чтобы увидеть копию этой лицензии,

посетите http://creativecommons.org/licenses/by-nc-nd/3.0/.
Дата компиляции этой PDF: 28 января 2014 г..

Англоязычная версия текста (а также сам tracer) также доступна по ссылке
http://yurichev.com/tracer-ru.html

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://yurichev.com/tracer-ru.html

Оглавление

Введение iii

Посвящение iv

Благодарности v

1 Общие опции 1

2 Как в tracer задается адрес 3

3 BPF: установка прерывания на исполнение функции 4
3.1 Опция TRACE . 6
3.2 Примеры . 8

3.2.1 Простое использование . 8
3.2.2 Перехват некоторых Windows-функций для работы с реестром 8
3.2.3 Подавить шумный сигнал . 8
3.2.4 Подавить диалоговое окно с сообщением . 8
3.2.5 Перехват вызовов rand() . 8
3.2.6 FreeCell . 9
3.2.7 Проверка ивентов и запись в лог в Oracle RDBMS 9
3.2.8 Слежение за выделением памяти в Oracle 11.1.0.6.0 win32/win64 10
3.2.9 Слежение за разбором SQL-выражений в Oracle RDBMS 10
3.2.10 Игнорирование неподписанных драйверов . 11
3.2.11 Вывод памяти по аргументам функций . 11
3.2.12 Вывод памяти по аргументам функций и слежение за её изменением 11

3.3 Примеры опции TRACE . 12
3.3.1 Трассировка строковых функций . 12
3.3.2 Трассируем quicksort() . 12

4 BPX: установка прерывания на произвольное место 15
4.1 Примеры . 15

4.1.1 Task Manager: создать иллюзию что у нас 32 или 64 процессора 15
4.1.2 Перехват развернутой (inline) функции strcmp() . 15
4.1.3 Изменение флагов перед тем как условный переход будет совершен 16
4.1.4 Шутка в Microsoft Excel . 17

5 BPM: установка прерывания на обращение к ячейке памяти 18
5.1 Примеры . 18

5.1.1 Слежение за обращением к переменным в Oracle RDBMS 18
5.1.2 Проверяет ли программа целостность своего кода? 19

6 Одноразовое прерывание по INT3 20

7 Взаимодействие во время работы 22

i

8 Отсоединение от процесса 23

9 Некоторые технические заметки 24

10 Известные проблемы 25
10.1 Windows 2000 . 25

11 Заключение 26

ii

Введение

Tracer это win32-отладчик командной строки для выполнения простых отладочных задач.
Главные возможности:

∙ Установка прерывания выполнении функции, вывод аргументов функции и результата.

∙ Трассировка каждой инструкции функции и сохранение значений регистров.

∙ Установка прерывания в любом месте, вывод состояния регистров процессора и возможность
изменить их.

∙ Установка прерывания на обращение к любой ячейки памяти и перехват всех обращений к ней.

Второстепенные возможности:

∙ Установка прерывания задавая адрес, имя символа или байтмаски.

∙ Обнаружение юникодных строк в аргументах функций.

∙ Поддержка как Windows x86 так и Windows x64.

∙ Поддержка символов Oracle RDBMS .SYM.

∙ Наличие исходных кодов.

iii

Посвящение

Опции BPX, BPMB/BPMW/BPMD названы так же как и в SoftICE, великолепном отладчике прошлого.

iv

Благодарности

Alex Ionescu.

v

Глава 1

Общие опции

-l:<fname.exe>: загрузка процесса.
-c:<cmd_line>: задание командной строки для загружаемого процесса.
Например:

tracer.exe -l:bzip2.exe -c:--help

Если командная строка содержит пробелы:

tracer.exe -l:rar.exe "-c:a archive.rar *"

-a:<fname.exe or PID>: присоединение к запущенному процессу по его имени или PID.
Процесс с таким именем должен быть загружен. Если процессов с таким имененем загружено

несколько, tracer присоеденяется ко всем сразу одновременно.
--loading: вывод имен файлов и базовых адресов для всех загружаемых модулей (обычно, это

DLL-файлы).
--child: присоеденяться в том числе и к процессам порождаемых главным процессом.
Например, вы можете запустить tracer.exe --child -l:cmd.exe, откроется консольное окно cmd.exe

и tracer будет присоеденятся к каждому процессу запущенному внутри командного интерпретатора.
--allsymbols[:<regexp>]: вывод всех символов в процессе загрузки по регулярному выражению:
--allsymbols:somedll.dll!.* опция может быть использована для вывода всех символов в неко-

торой DLL.
--allsymbols:.*printf выведет что-то вроде:

New symbol. Module=[ntdll.dll], address=[0x77C004BC], name=[_snprintf]
New symbol. Module=[ntdll.dll], address=[0x77B8E61F], name=[_snwprintf]
...
New symbol. Module=[msvcrt.dll], address=[0x75725F37], name=[vswprintf]
New symbol. Module=[msvcrt.dll], address=[0x75726649], name=[vwprintf]
New symbol. Module=[msvcrt.dll], address=[0x756C3D68], name=[wprintf]

-s: вывод стека вызовов перед каждым прерыванием.
Например:
tracer.exe -l:hello.exe -s bpf=kernel32.dll!WriteFile,args:5
Мы увидим:

23B4 (0) KERNEL32.dll!WriteFile (7, "hello to tracer!\r\n", 0x0000000E, 0x0017E3A4, 0) (
called from 0x7317754E (MSVCR90.dll!_lseeki64+0x56b))

Call stack of thread 0x23B4
return address=731778D8 (MSVCR90.dll!_write+0x9f)
return address=7313FB4A (MSVCR90.dll!_fdopen+0x1c0)
return address=7313F70C (MSVCR90.dll!_flsbuf+0x6e1)
return address=73141E50 (MSVCR90.dll!printf+0x84)
return address=0040100E (hello.exe!BASE+0x100e)
return address=0040116F (hello.exe!BASE+0x116f)

1

return address=76FCE4A5 (KERNEL32.dll!BaseThreadInitThunk+0xe)
return address=77C9CFED (ntdll.dll!RtlCreateUserProcess+0x8c)
return address=77C9D1FF (ntdll.dll!RtlCreateProcessParameters+0x4e)
23B4 (0) KERNEL32.dll!WriteFile -> 1

Вывод стека вызова очень удобен, например, мы имеем программу показывающую окно с сообще-
нием и перехватывая вызов USER32.DLL!MessageBoxA мы можем увидеть путь к этому вызову.

Возможность вывода стека доступна для всех типов прерываний BPF/BPX/BPM.
Замечание: эта возможность пока не очень хорошо работает в x64.
Если указана опция --dump-fpu, состояние регистров FPU будут показываться.
Если указана опция --dump-xmm, состояние всех регистров XMM также будут выводиться, если

только регистр не пуст.
Если указана опция --dump-seh, вся доступна информация о SEH будет выведена. Для отображения

информации SEH4, нужен доступ к переменной security_cookie, tracer будет искать её по имени в
файле .MAP или .PDB.

-t: записывать дату и время перед каждой строкой в лог:
--version: вывести номер текущей версии и дату/время компиляции, а также проверить наличие

новой версии доступной для скачивания.
Например:

tracer.exe -l:bzip2.exe bpf=cygwin1.dll!fprintf,args:2 -t

[2013-07-03 07:15:10:056] TID=13056|(0) cygwin1.dll!fprintf (0x611887b0, "%s: For help,
type: ‘%s --help’.\n") (called from bzip2.exe!OEP+0x15f1 (0x4025f1))

[2013-07-03 07:15:10:058] TID=13056|(0) cygwin1.dll!fprintf () -> 0x27

Эта возможность полезна тогда, когда нужно записывать в журнал время каких-то событий, на-
пример, когда именно некая программа обращается к сети.

--help: помощь.
-q: запрет любого вывода в консоль и лог.
@: опция позволяет сохранить все опции в текстовом файле и использовать их многократно:

tracer.exe @filename

Каждая строка файла представляет опцию. Это очень удобно для длинных и/или часто использу-
емых опций, как байтмаски (смотрите ниже).

Опция @ также может использоваться с любыми другими опциями:

tracer.exe -l:filename.exe @additional_options @even_more_options

2

Глава 2

Как в tracer задается адрес

Имеется три возможности задать адрес прерывания.

∙ Используя шестнадцатиричный адрес: 0x00400000 — так задается абсолютный адрес внутри
win32-процесса. Обратите внимание, что изменение базы загрузки PE-модуля не учитывается,
так что, если, например, в IDA, или ином дизассемблере, вы видите один адрес, то этот код все
же може быть загружен по другим адресам в памяти процесса (вы можете использовать опцию
--loading, чтобы увидеть, по каким базовым адресам загружаются модули).

А для того, чтобы указать некий адрес в определенном PE-модуле, адрес должен быть задан
так: module.dll!0x400000 — и это адрес автоматически подкорректируется, если модуль будет
загружен по другому базовому адресу.

∙ Используя символ.

Например: kernel32.dll!writefile

Здесь можно использовать регулярные выражения. Например: .*!printf</i>: tracer будет искать
символ printf в каждом загружаемом модуле. Если этот символ имеется в разных модулях, tracer
будет использовать только из того модуля, который был загружен раньше всех.

Для регулярных выражений используется синтаксис POSIX Extended Regular Expression (ERE).

Из-за того что здесь задается регулярное выражение, некоторые символы, такие как ?, . нужно
escape-ть. Например, чтобы задать адрес ?method@class@@QAEHXZ, нужно указывать \?method@class@@QAEHXZ.

Смещение также можно использовать. Например: file.exe!BASE+0x1234 (BASE это предопреде-
ленный символ, он равен базовому адресу PE-модуля) либо file.exe!label+0xa.

3

Глава 3

BPF: установка прерывания на
исполнение функции

Опция BPF, в каком-то смысле, похожа на работу утилиты strace1.
Главные отличия от strace:

∙ tracer работает только в win32/win64.

∙ Прерыванием может быть любоая функция а не только системные вызовы.

∙ Только 4 прерывания из-за ограничений архитектуры x86.

BPF с адресом но без дополнительных опций будет только показывать момент вызова функции и
то что она возвращает.

Например:

tracer.exe -l:bzip2.exe bpf=kernel32.dll!WriteFile

1188 (0) KERNEL32.dll!WriteFile () (called from 0x610AC912 (cygwin1.dll!sigemptyset+0x1022
))

1188 (0) KERNEL32.dll!WriteFile -> 1

Замечание: tracer не знает о том что функция может иметь тип void (т.е., не возвращает ничего).
Таким образом, tracer выводит просто то что находится в регистре EAX/RAX на момент выхода из
функции.

Опции:
ARGS:<number>: определить количество агрументов для перехватываемой функции.
Например:

tracer.exe -l:bzip2.exe -c:--help bpf=kernel32.dll!WriteFile,args:5

09D0 (0) KERNEL32.dll!WriteFile (0x0000001B, " If no file names are given, bzip2
compresses or decompresses", 0x0000003F, "?", 0)

09D0 (0) KERNEL32.dll!WriteFile -> 1
09D0 (0) KERNEL32.dll!WriteFile (0x0000001B, " from standard input to standard output.

You can combinesses", 0x0000003B, ";", 0)
09D0 (0) KERNEL32.dll!WriteFile -> 1
09D0 (0) KERNEL32.dll!WriteFile (0x0000001B, " short flags, so ‘-v -4’ means the same as

-v4 or -4v, &c.ses", 0x0000003C, "<", 0)
09D0 (0) KERNEL32.dll!WriteFile -> 1

1http://en.wikipedia.org/wiki/Strace

4

http://en.wikipedia.org/wiki/Strace

То что мы видим это попытку вывести 5 агрументов функции при каждом вызове функции WriteFile().
Если аргумент является указателем в пределах памяти процесса и то на что он указывает может быть
интерпретировано как ASCII-строка, она будет выведена. Это очень удобно для перехвата строковых
функций таких как strcmp(), strlen(), strtok(), atoi(), итд.

Ошибится в количестве аргументов не страшно (кроме случая использования опции skip_stdcall,
смотрите ниже). Если указанное количество аргументов больше чем на самом деле, возможно, значе-
ния из локальных переменных вызывающей функции будут выведены. Или какой-нибудь случайный
мусор. Если заданное количество аргументов меньше чем на самом деле, только часть аргументов
будет выведена.

RT:<number>: подставить другое возвращаемое значение в момент выхода из функции, на лету.

tracer.exe -l:filename.exe bpf=function,args:1,rt:0x12345678

tracer запишет это значение в регистр EAX/RAX в момент выхода из функции.
SKIP: пропустить выполнение функции. Эта опция может использоваться вместе с опцией RT.

tracer.exe -l:filename.exe bpf=function,args:1,rt:0x12345678,skip

Это означает что в момент начала выполнения функции, управление сразу будет передано на выход
и возвращаемое значение будет установлено в 0x12345678.

Замечание: без префикса "0x это значение будет интерпретироваться как десятичное число.
SKIP_STDCALL: то же что и SKIP, только для stdcall-функций.
Разница между типами функций cdecl и stdcall в том что функция типа сdecl на выходе не вырав-

нивает указатель стека (вызывающая функция должна сделать это). Функция типа stdcall выравни-
вает указатель стека. cdecl это наиболее используемый тип функций. Хотя, stdcall используется в MS
Windows. Так что, если вы хотите пропустить выполнение какой-либо функции в KERNEL32.DLL или
USER32.DLL, вы должны использовать skip_stdcall. Следовательно, в этом случае, tracer должен
знать точное количество аргументов, а без этого процесс может упасть.2

Если вы хотите подавить все вызовы функции WriteFile:

tracer.exe -l:hello.exe bpf=kernel32.dll!WriteFile,args:5,skip_stdcall,rt:1

Не забывайте возвращать 1, для того чтобы вызываемая функция не заподозрила ничего! Количе-
ство аргументов функции WriteFile — 5. Поменяйте это значение на что-то другое и процесс упадет.

Замечание: тип функции stdcall отсутствует в Windows x64, так что эта опция отсутствует в 64-
битной версии tracer.

UNICODE: трактовать строки в аргументах как юникодные (два байта на каждый символ). Это может
быть полезно для перехвата win32-функций с суффиксом W, например, MessageBoxW.

К сожалению, tracer умеет автоматически выявлять только строки использующие первую полови-
ну таблицы ASCII, так что строки на других языках кроме тех что используют латиницу не будут
выявлены автоматически.

DUMP_ARGS:<size>: дампить память по аргументам функции (если она чиается) с ограничением size.
Если аргумент функции содержит указатель на читаемый блок памяти, он будет выведен.
На момент выхода из функции, если блок в памяти изменился, то разница будет выведена также.
Например:

tracer64.exe -l:test_getlocaltime.exe bpf=.*!getlocaltime,args:1,dump_args:0x30

TID=6660|(0) KERNEL32.dll!GetLocalTime (0x12ff00) (called from 0x14000100f (getlocaltime.
exe!BASE+0x100f))

Dump of buffer at argument 1 (starting at 1)
000000000012FF00: 28 FF 12 00 00 00 00 00-00 00 00 00 00 00 00 00 "(..............."
000000000012FF10: 01 00 00 00 00 00 00 00-73 11 00 40 01 00 00 00 "........s..@...."
000000000012FF20: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 "................"
TID=6660|(0) KERNEL32.dll!GetLocalTime -> 0x150

2Смотрите также: X86 calling conventionshttp://en.wikipedia.org/wiki/X86_calling_conventions

5

http://en.wikipedia.org/wiki/X86_calling_conventions

Dump difference of buffer at argument 1 (starting at 1)
0000000000000000: D9 07 0C 06 05 -05 10 24 50 01 "... $ P."

Таким образом мы можем увидеть как win32-функция GetLocalTime() заполняет структуру SYSTEMTIME.
PAUSE:<number>: Сделать паузу, в миллисекундах. 1000 — одна секунда. Удобно для тестирования,

для создания искусственных задержек. К примеру, полезно знать, как поведет себя программа при
очень медленной сети:

tracer.exe -l:test1.exe bpf=WS2_32.dll!WSARecv,pause:1000

... или же, если будет считывать информацию с какого-то очень медленного носителя:

tracer.exe -l:test1.exe bpf=kernel32.dll!ReadFile,pause:1000

RT_PROBABILITY:<number>: Используется в паре с опцией RT:, задает вероятность срабатывания RT.
К примеру, если был задан RT:0 и RT_PROBABILITY:30%, то 0 будет подставляться вместо результата
функции в 30% случаев. Это также удобно для тестирования — хорошо написанная программа долж-
на корректно обрабатывать ошибки. Например, вот так мы можем симулировать ошибки выделения
памяти, 1 вызов malloc() на сотню, вернет NULL:

tracer.exe -l:test1.exe bpf=msvcrt.dll!malloc,rt:0,rt_probability:1%

... в 10% случаев, файл не будет открываться:

tracer.exe -l:test1.exe bpf=kernel32.dll!CreateFile,rt:0,rt_probability:10%

Вероятность также можно задавать и обычным образом, как число в интервале от 0 (никогда) до
1 (всегда). 10% это 0.1, 3% это 0.03, итд.

Об идеях, какие еще ошибки можно симулировать, читайте так же здесь Oracle RDBMS internal
self-testing features.

3.1 Опция TRACE

TRACE: трассировать функцию по одной инструкции и сохранять значения всех интересующих нас
регистров. После исполнения, эта информация сохранится в файлы process.exe.idc, process.exe.txt,
process.exe_clear.idc. .idc-файлы являются скриптами для IDA, а к .txt файлу можно применять grep,
awk, sed для поиска интересующих нас значений.

Возьмем для примера функцию add_member из статьи Using Uninitialized Memory for Fun and
Profit3:

int dense[256];
int dense_next=0;
int sparse[256];

void add_member(int i)
{

dense[dense_next]=i;
sparse[i]=dense_next;
dense_next++;

};

int main ()
{

add_member(123);
add_member(5);

3http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html

6

http://blog.yurichev.com/node/43
http://blog.yurichev.com/node/43
http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html

add_member(71);
add_member(99);

}

Скомпилируем и запустим трассировку на функции add_member (вначале узнайте адрес функции
при помощи IDA):

tracer -l:trace_test4.exe bpf=0x00401000,trace:cc

Получим файл trace_test4.exe.txt:

0x401000, e= 4
0x401001, e= 4
0x401003, e= 4, [0x403818]=0..3
0x401008, e= 4, [EBP+8]=5, 0x47(’G’), 0x63(’c’), 0x7b(’{’)
0x40100b, e= 4, ECX=5, 0x47(’G’), 0x63(’c’), 0x7b(’{’)
0x401012, e= 4, [EBP+8]=5, 0x47(’G’), 0x63(’c’), 0x7b(’{’)
0x401015, e= 4, [0x403818]=0..3
0x40101a, e= 4, EAX=0..3
0x401021, e= 4, [0x403818]=0..3
0x401027, e= 4, ECX=0..3
0x40102a, e= 4, ECX=1..4
0x401030, e= 4
0x401031, e= 4, EAX=0..3

Поле e - это сколько раз была исполнена эта инструкция.
Загрузим trace_test4.exe.idc в IDA и увидим:

Рис. 3.1: trace_test4.png

Понимать работу функции во время исполнения, таким образом, становится намного проще.
Исполненные инструкции подсвечиваются голубым цветом. Неисполненные остаются белыми.
Чтобы стереть все комментарии и подсветку, нужно исполнить скрипт trace_test4.exe_clear.idc
Информация в IDA-скрипте может приводится в сокращенной форме из-за того что IDA имеет огра-

ничение на длину комментария, например: EAX=[64 unique items. min=0xbca6eb7, max=0xffffffed
]. В текстовом же файле сохраняется всё, поэтому иногда этот файл может оказаться в итоге очень
большим.

Недостаток опции TRACE в том что она работает медленно, хотя и функции в системных DLL
пропускаются (системной считается та DLL которая находится внутри %SystemRoot%) Вторая про-

7

блема в том что пока что не очень корректно трассируются вещи вроде исключений, setjmp/longjmp и
подобных непредвиденных изменений пути исполнения кода.

3.2 Примеры

3.2.1 Простое использование

tracer.exe -l:bzip2.exe bpf=.*!fprintf,args:3

TID=5128|(0) cygwin1.dll!fprintf (0x61103150, "%s: I won’t write compressed data to a
terminal.\n", "bzip2") (called from 0x401e03 (bzip2.exe!BASE+0x1e03))

TID=5128|(0) cygwin1.dll!fprintf -> 0x34
TID=5128|(0) cygwin1.dll!fprintf (0x61103150, "%s: For help, type: ‘%s --help’.\n", "bzip2

") (called from 0x401c66 (bzip2.exe!BASE+0x1c66))
TID=5128|(0) cygwin1.dll!fprintf -> 0x27

3.2.2 Перехват некоторых Windows-функций для работы с реестром

tracer.exe -l:someprocess.exe bpf=advapi32.dll!RegOpenKeyExA,args:5 bpf=advapi32.dll!
RegQueryValueExA,args:6 bpf=advapi32.dll!RegSetValueExA,args:6

.. или измените суффиксы функция на W и добавьте опцию UNICODE:

tracer64.exe -l:far.exe bpf=advapi32.dll!RegOpenKeyExW,args:5,unicode bpf=advapi32.dll!
RegQueryValueExW,args:6,unicode bpf=advapi32.dll!RegSetValueExW,args:6,unicode

3.2.3 Подавить шумный сигнал

tracer.exe -l:beeper.exe bpf=kernel32.dll!Beep,args:2,skip_stdcall,rt:1

3.2.4 Подавить диалоговое окно с сообщением

... и сделать так что вызываемая функция будет считать что пользователь каждый раз нажимает OK
(константа IDOK равняется 1):

tracer.exe -l:filename.exe bpf=user32.dll!MessageBoxA,args:4,skip_stdcall,rt:1

... или CANCEL (константа IDCANCEL равняется 2):

tracer.exe -l:filename.exe bpf=user32.dll!MessageBoxA,args:4,skip_stdcall,rt:2

3.2.5 Перехват вызовов rand()

Бывает весело перехватывать вызовы функции rand() в различных играх. Например, пасьянс Solitaire
в Windows использует его для того чтобы сгенерировать случайный расклад. Мы можем установить
возвращаемое значение rand() в ноль, и тогда Solitaire будет раздавать один и тот же расклад, всегда:

В Windows XP x86/x64:

tracer.exe/tracer64.exe -l:c:\windows\system32\sol.exe bpf=.*!rand,rt:0

В Windows 7 x64:

tracer64.exe -l:[full path to]\Solitaire.exe bpf=.*!rand,rt:0

8

3.2.6 FreeCell

Когда вы запускаете FreeCell в Windows (XP SP3) и нажимаете F2 (Новая игра), вы видите сообщение
"Do you want to resign this game?"Мы можем подавить звуковой сигнал и сделать так что FreeCall
будет думать что пользователь всегда нажимает YES:

Константа IDYES - 6. FreeCell использует функцию MessageBoxW - суффикс W означает уникодную
версию функции MessageBox.

В Windows XP SP3 x86:

tracer.exe -l:c:\windows\system32\freecell.exe bpf=user32.dll!messagebeep,args:1,
skip_stdcall bpf=user32.dll!messageboxw,args:4,unicode,skip_stdcall,rt:6

(0) user32.dll!messagebeep (0x20) (called from freecell.exe!BASE+0x1f52 (0x1001f52))
(0) Skipping execution of this function
(0) user32.dll!messagebeep () -> 0x8
(1) user32.dll!messageboxw (0x160152, "Do you want to resign this game?", "FreeCell", 0x24

) (called from freecell.exe!BASE+0x1f5f (0x1001f5f))
(1) Skipping execution of this function
(1) user32.dll!messageboxw () -> 0x8
(1) Modifying EAX register to 0x6

В Windows XP SP2 x64 Russian:

tracer64.exe -l:c:\windows\system32\freecell.exe bpf=user32.dll!messagebeep,args:1,skip
bpf=user32.dll!messageboxw,args:4,unicode,skip,rt:6

TID=2836|(0) user32.dll!messagebeep (0x20) (called from freecell.exe!BASE+0x23f9 (0
x1000023f9))

(0) Skipping execution of this function
TID=2836|(0) user32.dll!messagebeep () -> 0x8
TID=2836|(1) user32.dll!messageboxw (0x5010e, "Do you want to resign this game?", "

FreeCell", 0x24) (called from freecell.exe!BASE+0x2416 (0x100002416))
(1) Skipping execution of this function
TID=2836|(1) user32.dll!messageboxw () -> 0x8
TID=2836|(1) Modifying RAX register to 0x6

3.2.7 Проверка ивентов и запись в лог в Oracle RDBMS

В Oracle 10.2.0.1 win64:

tracer64.exe -a:oracle.exe bpf=oracle.exe!ksdpec,args:1 bpf=oracle.exe!ss_wrtf,args:3

(Смотрите также: http://blog.yurichev.com/node/14)

TID=3032|(0) oracle.exe!ksdpec (0x2743) (called from 0x9580a9 (oracle.exe!opiodr+0x105))
TID=3032|(0) oracle.exe!ksdpec -> 0xff
TID=3032|(1) oracle.exe!ss_wrtf (0x4a0, "*** 2009-12-04 06:19:01.005\n", 0x1b) (called

from 0x45318d (oracle.exe!sdpri+0x22d))
TID=3032|(1) oracle.exe!ss_wrtf -> 1
TID=3032|(1) oracle.exe!ss_wrtf (0x4a0, "OPI CALL: type=107 argc= 3 cursor= 0 name=SES

OPS (80)\n", 0x37) (called from 0x45318d (oracle.exe!sdpri+0x22d))
TID=3032|(1) oracle.exe!ss_wrtf -> 1
TID=3032|(0) oracle.exe!ksdpec (0x2743) (called from 0x9580a9 (oracle.exe!opiodr+0x105))
TID=3032|(0) oracle.exe!ksdpec -> 0xff
TID=3032|(1) oracle.exe!ss_wrtf (0x4a0, "OPI CALL: type=59 argc= 4 cursor= 0 name=

VERSION2\n", 0x32) (called from 0x45318d (oracle.exe!sdpri+0x22d))

9

http://blog.yurichev.com/node/14

TID=3032|(1) oracle.exe!ss_wrtf -> 1
TID=3032|(0) oracle.exe!ksdpec (0x273e) (called from 0x4a00cc (oracle.exe!kslwte_tm+0x7a8)

)
TID=3032|(0) oracle.exe!ksdpec -> 0
TID=3032|(0) oracle.exe!ksdpec (0x273e) (called from 0x4a00cc (oracle.exe!kslwte_tm+0x7a8)

)
TID=3032|(0) oracle.exe!ksdpec -> 0
TID=3032|(0) oracle.exe!ksdpec (0x2743) (called from 0x9580a9 (oracle.exe!opiodr+0x105))
TID=3032|(0) oracle.exe!ksdpec -> 0xff
TID=3032|(1) oracle.exe!ss_wrtf (0x4a0, "OPI CALL: type=104 argc=12 cursor= 0 name=

Transaction Commit/Rollback\n", 0x46) (called from 0x45318d (oracle.exe!sdpri+0x22d))
TID=3032|(1) oracle.exe!ss_wrtf -> 1

3.2.8 Слежение за выделением памяти в Oracle 11.1.0.6.0 win32/win64

tracer.exe/tracer64.exe -a:oracle.exe bpf=.*!kghalf,args:6 bpf=.*!kghfrf,args:4

TID=1600|(0) oracle.exe!kghalf (0x6d35af0, 0xb507ef8, 0x1000, 0, 0, "kzsrcrdi") (called
from 0x1c7aa83 (oracle.exe!kzctxhugi+0x71))

TID=1600|(0) oracle.exe!kghalf -> 0xfa3ea58

TID=1600|(0) oracle.exe!kghalf (0x6d35af0, 0xb507ef8, 0x58, 1, 0x6d35530, "UPI heap") (
called from 0x1e7f8b7 (oracle.exe!__PGOSF266_kwqmahal+0x5b))

TID=1600|(0) oracle.exe!kghalf -> 0xfa4d0d8

TID=1188|(0) oracle.exe!kghalf (0xda39540, 0xda39240, 0x88, 0, "ksirmdt array", 0xda39240)
(called from 0x6afb5b (oracle.exe!ksz_nfy_ipga+0xf1))

TID=1188|(0) oracle.exe!kghalf -> 0x105d0b10

TID=1188|(0) oracle.exe!kghalf (0xda39540, 0xda39240, 0x48, 1, 0x1204e400, "local") (
called from 0x3684a64 (oracle.exe!kjztcxini+0x58))

TID=1188|(0) oracle.exe!kghalf -> 0x105d0ab0

3.2.9 Слежение за разбором SQL-выражений в Oracle RDBMS

В Oracle 11.1.0.6.0 win32/win64:

tracer.exe/tracer64.exe -a:oracle.exe bpf=oracle.exe!_?rpisplu,args:8 bpf=oracle.exe!_?
kprbprs,args:7 bpf=oracle.exe!_?opiprs,args:6 bpf=oraclient11.dll!OCIStmtPrepare,args
:6</i></p>

Замечание: регулярное выражение _?function покрывает оба имени: function и _function.

TID=1140|(2) oracle.exe!opiprs (0x13f029d0, "select 1 from obj$ where name=’
DBA_QUEUE_SCHEDULES’", 0x34, 0x10ae7f50, 0x840082, 0xd9f7a10) (called from 0x6ba3bf (
oracle.exe!__PGOSF423_kksParseChildCursor+0x2dd))

TID=1140|(2) oracle.exe!opiprs -> 0
TID=1140|(2) oracle.exe!opiprs (0x13f029d0, "select 1 from sys.aq$_subscriber_table where

rownum < 2 and subscriber_id <> 0 and table_objno <> 0", 0x64, 0x10ad5de8, 0, 0
x13f007e0) (called from 0x6ba3bf (oracle.exe!__PGOSF423_kksParseChildCursor+0x2dd))

TID=1140|(2) oracle.exe!opiprs -> 0
TID=1140|(0) oracle.exe!rpisplu (3, 0, 0, 0, 0, 0x14430ac0, 0, 0) (called from 0x250b33c (

oracle.exe!kqdGetCursor+0x106))
TID=1140|(0) oracle.exe!rpisplu -> 0

10

TID=1288|(2) oracle.exe!opiprs (0x17df8130, "select * from v$version", 0x18, 0x10adee60,
0, 0) (called from 0x6ba3bf (oracle.exe!__PGOSF423_kksParseChildCursor+0x2dd))

TID=1288|(1) oracle.exe!kprbprs (0xa82bc50, 0, "select timestamp, flags from fixed_obj$
where obj#=:1", 0x35, 0xffffe3e0, 0x2040800, 1) (called from 0x2ba1b1f (oracle.exe!
kqldtstr+0x151))

TID=1288|(1) oracle.exe!kprbprs -> 0
TID=1288|(0) oracle.exe!rpisplu (0x1f, 0, 0, 0, 0, 0x2bb5e04, "select BANNER from

GV$VERSION where inst_id = USERENV(’Instance’)", 0xffffc085) (called from 0x2bbcabf (
oracle.exe!kqldFixedTableLoadCols+0x157))

TID=1288|(1) oracle.exe!kprbprs (0x1090c108, 0, "select timestamp, flags from fixed_obj$
where obj#=:1", 0x35, 0xffffe3e0, 0x2040800, 1) (called from 0x2ba1b1f (oracle.exe!
kqldtstr+0x151))

TID=1288|(1) oracle.exe!kprbprs -> 0
TID=1288|(1) oracle.exe!kprbprs (0x10908060, 0, "select timestamp, flags from fixed_obj$

where obj#=:1", 0x35, 0xffffe3e0, 0x2040800, 1) (called from 0x2ba1b1f (oracle.exe!
kqldtstr+0x151))

TID=1288|(1) oracle.exe!kprbprs -> 0
TID=1288|(2) oracle.exe!opiprs -> 0
TID=1288|(0) oracle.exe!rpisplu -> 0
TID=1288|(0) oracle.exe!rpisplu (0x16, 0, 0, 0, 0, 0x10b3ce50, 0, 0) (called from 0

x250b33c (oracle.exe!kqdGetCursor+0x106))
TID=1288|(0) oracle.exe!rpisplu -> 0

3.2.10 Игнорирование неподписанных драйверов

tracer.exe -l:target.exe bpf=Wintrust.dll!WinVerifyTrust,rt:0

3.2.11 Вывод памяти по аргументам функций

tracer.exe -l:rar.exe "-c:a archive.rar *.exe" bpf=kernel32.dll!writefile,args:5,dump_args
:0x10

RAR записывает свою сигнатуру в начало файла archive.rar:

TID=7000|(0) KERNEL32.dll!WriteFile (0x118, 0x152410, 7, 0x150fc0, 0) (called from 0
x403721 (rar.exe!__GetExceptDLLinfo+0x26c8))

Dump of buffer at argument 2 (starting at 1)
00152410: 52 61 72 21 1A 07 00 00-50 30 15 00 5D 83 40 00 "Rar!....P0..].@."
Dump of buffer at argument 4 (starting at 1)
00150FC0: 00 00 00 00 21 7B 40 00-10 24 15 00 18 24 15 00 "....!{@..$...$.."
TID=7000|(0) KERNEL32.dll!WriteFile -> 1

3.2.12 Вывод памяти по аргументам функций и слежение за её изменением

tracer.exe -l:rar.exe "-c:x archive.rar" bpf=kernel32.dll!readfile,args:4,dump_args:0x10

Архиватор RAR открывает файл archive.rar и первым делом читает сигнатуру:

TID=6148|(0) KERNEL32.dll!ReadFile (0x120, 0x17b3f8, 7, 0x174c50) (called from 0x403966 (
rar.exe!__GetExceptDLLinfo+0x290d))

Dump of buffer at argument 2 (starting at 1)
0017B3F8: 00 00 00 00 00 00 00 00-00 00 00 00 48 00 00 00 "............H..."
Dump of buffer at argument 4 (starting at 1)

11

00174C50: 07 00 00 00 78 4C 17 00-7A 38 40 00 8C 6D 17 00 "....xL..z8@..m.."
TID=6148|(0) KERNEL32.dll!ReadFile -> 1
Dump difference of buffer at argument 2 (starting at 1)
00000000: 52 61 72 21 1A 07 - "Rar!.. "

3.3 Примеры опции TRACE

3.3.1 Трассировка строковых функций

Возьмем пример применения strtok():

// example from http://www.cplusplus.com/reference/clibrary/cstring/strtok/

/* strtok example */
#include <stdio.h>
#include <string.h>

int main ()
{

char str[] ="- This, a sample string.";
char * pch;
printf ("Splitting string \"%s\" into tokens:\n",str);
pch = strtok (str," ,.-");
while (pch != NULL)
{

printf ("%s\n",pch);
pch = strtok (NULL, " ,.-");

}
return 0;

}

И трассируем функцию main():

tracer.exe -l:trace_test1.exe bpf=0x00401000,trace:cc

После исполнения скрипта в IDA (показана только тело цикла while):

Рис. 3.2: trace_test1.png

Замечание: "a"это слишком короткая строка для автоматического детектора строк в tracer, поэтому
её здесь нет, вместо нее адрес этой строки.

3.3.2 Трассируем quicksort()

Возьмем известный пример:

12

//http://cplus.about.com/od/learningc/ss/pointers2_8.htm

/* ex3 Sorting ints with qsort */
//

#include <stdio.h>
#include <stdlib.h>

int comp(const int * a,const int * b)
{

if (*a==*b)
return 0;

else
if (*a < *b)

return -1;
else
return 1;

}

int main(int argc, char* argv[])
{

int numbers[10]={1892,45,200,-98,4087,5,-12345,1087,88,-100000};
int i;

/* Sort the array */
qsort(numbers,10,sizeof(int),comp);
for (i=0;i<9;i++)

printf("Number = %d\n",numbers[i]);
return 0;

}

Трассируем функцию comp():

tracer.exe -l:trace_test2.exe bpf=0x00401030,trace:cc

Получим после исполнения скрипта в IDA:
В примере все значения уникальны, одинаковых нет. Таким образом, нет ситуации когда comp()

возвращает ноль. Поэтому здесь мы видим что часть comp() возвращающая ноль (xor eax,eax / retn)
не была исполнена ни разу.

13

Рис. 3.3: trace_test2.png

14

Глава 4

BPX: установка прерывания на
произвольное место

Содержимое регистров процессора будет выведено.
Если хотя бы один регистр FPU что-то содержит, он также будет выведен.
Если содержимое FPU-регистра NaN (нечисло), содержимое регистра FPU будет трактовано как

регистра MMX и также будет выведено.
DUMP(ADDRESS|REGISTER|SYMBOL[+OFFSET],SIZE): вывод содержимого памяти. Определить адрес в

памяти можно в виде шестнадцатиричного значения или в виде REGISTER+OFFSET. SIZE — это размер
дампа.

Если перед адресом или регистром поставить символ *, то tracer вначале прочитает DWORD (или
QWORD в x64-версии), примет его за адрес и выдаст дамп по нему. Например: dump(*ebx,0x100) —
взять адрес из ячейки памяти на которую указывает регистр ebx и выдать дамп размером 0x100 байт.

COPY(ADDRESS|REGISTER|SYMBOL[+OFFSET],C-string): скопировать Си-строку по указанному адре-
су. Си-строка может быть как ASCII-строкой, так и содержать последовательности \xXX, где XX —
шестнадцатиричное число. Например: COPY(EAX,a\x34\x56) — скопирует три байта ’a’, 0x34, и 0x56 по
адресу который содержится в EAX.

SET (REGISTER,VALUE): записать значение в регистр. EIP/RIP, регистры FPU ST0..ST7 и флаги
(PF, SF, AF, ZF, OF, CF, DF) можно модифицировать. Значение трактуется как десятичное число или
как число с плавающей запятой, если только не указан префикс 0x.

Замечание: tracer не модифицирует tag word register в FPU, также он не модифицирует регистр
TOP, таким образом, если какой-то регистр FPU маркирован как "пустой"и tracer запишет туда какое-
то значение, он останется маркированным как "пустой".

Изменение значения регистра EIP/RIP иными словами это передача исполнения в другое место.
Это удобно для того чтобы пропускать некоторые куски кода.

4.1 Примеры

4.1.1 Task Manager: создать иллюзию что у нас 32 или 64 процессора

В Windows XP SP2 x64 Russian:

tracer64.exe -l:c:\windows\system32\taskmgr.exe bpx=0x000000010000A8E4,set(rax,64)

В Windows XP SP3 x86 English:

tracer.exe -l:c:\windows\system32\taskmgr.exe bpx=0x01006647,set(eax,32)

4.1.2 Перехват развернутой (inline) функции strcmp()

Представим что у нас есть такой код который мы компилируем в MS VC 2008:

printf ("%d\n", strcmp("one", "two"));

15

После компиляции мы получим:

<pre>
.text:00401000 BA 50 A1 40 00 mov edx, offset aTwo ; "two"
.text:00401005 B9 54 A1 40 00 mov ecx, offset aOne ; "one"
.text:0040100A 8D 9B 00 00 00 00 lea ebx, [ebx+0]
.text:00401010
.text:00401010 loc_401010: ; CODE XREF:

_main+2A
.text:00401010 8A 01 mov al, [ecx]
.text:00401012 3A 02 cmp al, [edx]
.text:00401014 75 29 jnz short loc_40103F
.text:00401016 84 C0 test al, al
.text:00401018 74 12 jz short loc_40102C
.text:0040101A 8A 41 01 mov al, [ecx+1]
.text:0040101D 3A 42 01 cmp al, [edx+1]
.text:00401020 75 1D jnz short loc_40103F
.text:00401022 83 C1 02 add ecx, 2
.text:00401025 83 C2 02 add edx, 2
.text:00401028 84 C0 test al, al
.text:0040102A 75 E4 jnz short loc_401010
.text:0040102C
.text:0040102C loc_40102C: ; CODE XREF:

_main+18
.text:0040102C 33 C0 xor eax, eax
.text:0040102E 50 push eax
.text:0040102F 68 58 A1 40 00 push offset byte_40A158 ; char *
.text:00401034 E8 1C 00 00 00 call _printf
.text:00401039 83 C4 08 add esp, 8
.text:0040103C 33 C0 xor eax, eax
.text:0040103E C3 retn

Давайте перехватим эту развернутую функцию strcmp и выведем то на что указывают регистры
ECX и EDX:

tracer.exe -l:strcmp.exe bpx=8A013A02752984C074128A41013A4201751D83C10283C20284C075E433C0,
dump(ecx,0x10),dump(edx,0x10)

Получим:

bytemask_0 is resolved to address 0x401010 (strcmp.exe)
TID=6436|(0) 0x401010 (strcmp.exe!BASE+0x1010)
EAX=0x007722E0 EBX=0x7EFDE000 ECX=0x0040A154 EDX=0x0040A150
ESI=0x00000000 EDI=0x00000000 EBP=0x0018FF88 ESP=0x0018FF44
EIP=0x00401010
FLAGS=PF ZF IF
Dumping memory at ECX
0040A154: 6F 6E 65 00 25 64 0A 00-28 00 6E 00 75 00 6C 00 "one.%d..(.n.u.l."
Dumping memory at EDX
0040A150: 74 77 6F 00 6F 6E 65 00-25 64 0A 00 28 00 6E 00 "two.one.%d..(.n."

Замечание: только первое вхождение при поиске байтмаски будет использоваться.

4.1.3 Изменение флагов перед тем как условный переход будет совершен

tracer64.exe -l:flags.exe bpx=0x140001014,set(zf,1)

16

Замечание: момент когда tracer меняет состояние регистров это момент перед тем как текущая
инструкция будет исполнена. Изменение флагов перед инструкциями TEST или CMP бессмысленно.

4.1.4 Шутка в Microsoft Excel

Сделать 666 результатом всех операций деления. Введите -(123/456)"для проверки.
Работает для Excel.exe версии 14.0.4756.1000 (Microsoft Office 2010)

tracer.exe -l:excel.exe bpx=excel.exe!base+0x11E91B,set(st0,666)

tracer64.exe -l:excel.exe bpx=excel.exe!base+0x1B7FCC,set(st0,666)

(Указанный адрес это место после инструкции FDIV, которая собственно и производит деление)

Рис. 4.1: excel_prank.png

17

Глава 5

BPM: установка прерывания на
обращение к ячейке памяти

Архитектура x86 позволяет устанавливать прерывания на обращение к ячейкам памяти.
Таким образом, если кто-то или что-то модифицирует в памяти какое-то значение, tracer тут же

будет об этом знать.
Следует также заметить, что это практично только для глобальных переменных а не локальных

(размещаемых в стеке).
BPMB=<address>,<option>: установить прерывание на обращение к байту. BPMW=<address>,<option>:

установить прерывание на обращение к 16-битному слову (word).
BPMD=<address>,<option>: установить прерывание на обращение к 32-битному слову (dword).
BPMQ=<address>,<option>: установить прерывание на обращение к 64-битному слову (qword) (до-

ступно только в tracer64).
W: установить прерывание только на запись в ячейку памяти.
RW: установить прерывание на запись и чтение из ячейки памяти.
Замечание: по какой-то неизвестной причине, архитектура Intel предоставляет только две эти воз-

можности.

5.1 Примеры

5.1.1 Слежение за обращением к переменным в Oracle RDBMS

Давайте попробуем следить за всеми чтениями и записями в глобальную переменную ktsmgd и видеть
стек вызовов:

tracer.exe -a:oracle.exe -s bpmd=oracle.exe!_?ktsmgd_,rw

Запустите в консоли SQL*Plus (залогиньтесь перед этим как SYS):

ALTER SYSTEM SET "_disable_txn_alert"=1;

Получим:

TID=2852|(0) oracle.exe!_ktsmgdcb+0x18: some code reading or writting DWORD variable at
oracle.exe!_ktsmgd_ (now it contain 0x1)

Call stack of thread TID=2852
return address=0x4682f0 (oracle.exe!_kspptval+0x704)
return address=0x4674b0 (oracle.exe!_kspset0+0x928)
return address=0x8f23c6 (oracle.exe!_kkyasy+0x3cda)
return address=0x92ba1d (oracle.exe!_kksExecuteCommand+0x475)
return address=0x1f75e02 (oracle.exe!_opiexe+0x4bda)
return address=0x1e98390 (oracle.exe!_kpoal8+0x900)
return address=0x9df597 (oracle.exe!_opiodr+0x4cb)
return address=0x6102eb00 (oracommon11.dll!_ttcpip+0xab0)

18

return address=0x9de77e (oracle.exe!_opitsk+0x4fe)
return address=0x1fdf128 (oracle.exe!_opiino+0x430)
return address=0x9df597 (oracle.exe!_opiodr+0x4cb)
return address=0x450b1c (oracle.exe!_opidrv+0x32c)
return address=0x451352 (oracle.exe!_sou2o+0x32)
return address=0x401197 (oracle.exe!_opimai_real+0x87)
return address=0x401061 (oracle.exe!_opimai+0x61)
return address=0x401c55 (oracle.exe!_OracleThreadStart@4+0x301)
return address=0x77e66063 (KERNEL32.dll!GetModuleFileNameA+0xeb)

Читайте больше тут: http://blog.yurichev.com/node/3 о параметре _disable_txn_alert и значе-
нии переменной ktsmgd.

5.1.2 Проверяет ли программа целостность своего кода?

Такие точки прерываний удобно устанавливать не только на переменные в памяти, но также и на
участки исполняемого кода, чтобы узнать, проверяет ли программа целостность своего кода, был ли
он модифицирован?

Часто, в таких случаях, некая функция просто вычисляет контрольную сумму всего исполняемого
файла, либо исполняемых PE-секций, либо отдельных функций. Устанавливая BPMB с параметром R на
начало какой-либо функции, можно быстро узнать, происходят такие проверки, или нет.

19

http://blog.yurichev.com/node/3

Глава 6

Одноразовое прерывание по INT3

Этот метод прерывания позволяет поставить сразу очень много прерываний типа INT3 по маске. К
примеру, можно поставить точки прерывания на все функции какой-либо DLL:

--one-time-INT3-bp:somedll.dll!.*

Либо, поставим INT3-прерывание на все функции, имена которых начинаются с префикса xml:

--one-time-INT3-bp:somedll.dll!xml.*

В качестве обратной стороны медали, такие прерывания срабатывают только один раз.
Tracer покажет вызов какой-либо функции, если он случится, но только один раз. Еще один недо-

статок — увидеть аргументы функции также нельзя.
Тем не менее, эта возможность очень удобна для тех ситуаций, когда вы знаете что некая програм-

ма использует некую DLL, но не знаете какие именно функции. И функций много.

Например, попробуем узнать, что использует cygwin-утилита uptime:

tracer -l:uptime.exe --one-time-INT3-bp:cygwin1.dll!.*

Так мы можем увидеть все ф-ции из библиотеки cygwin1.dll, которые были вызваны хотя бы один
раз, и откуда:

One-time INT3 breakpoint: cygwin1.dll!__main (called from uptime.exe!OEP+0x6d (0x40106d))
One-time INT3 breakpoint: cygwin1.dll!_geteuid32 (called from uptime.exe!OEP+0xba3 (0

x401ba3))
One-time INT3 breakpoint: cygwin1.dll!_getuid32 (called from uptime.exe!OEP+0xbaa (0

x401baa))
One-time INT3 breakpoint: cygwin1.dll!_getegid32 (called from uptime.exe!OEP+0xcb7 (0

x401cb7))
One-time INT3 breakpoint: cygwin1.dll!_getgid32 (called from uptime.exe!OEP+0xcbe (0

x401cbe))
One-time INT3 breakpoint: cygwin1.dll!sysconf (called from uptime.exe!OEP+0x735 (0x401735)

)
One-time INT3 breakpoint: cygwin1.dll!setlocale (called from uptime.exe!OEP+0x7b2 (0

x4017b2))
One-time INT3 breakpoint: cygwin1.dll!_open64 (called from uptime.exe!OEP+0x994 (0x401994)

)
One-time INT3 breakpoint: cygwin1.dll!_lseek64 (called from uptime.exe!OEP+0x7ea (0x4017ea

))
One-time INT3 breakpoint: cygwin1.dll!read (called from uptime.exe!OEP+0x809 (0x401809))
One-time INT3 breakpoint: cygwin1.dll!sscanf (called from uptime.exe!OEP+0x839 (0x401839))
One-time INT3 breakpoint: cygwin1.dll!uname (called from uptime.exe!OEP+0x139 (0x401139))
One-time INT3 breakpoint: cygwin1.dll!time (called from uptime.exe!OEP+0x22e (0x40122e))

20

One-time INT3 breakpoint: cygwin1.dll!localtime (called from uptime.exe!OEP+0x236 (0
x401236))

One-time INT3 breakpoint: cygwin1.dll!sprintf (called from uptime.exe!OEP+0x25a (0x40125a)
)

One-time INT3 breakpoint: cygwin1.dll!setutent (called from uptime.exe!OEP+0x3b1 (0x4013b1
))

One-time INT3 breakpoint: cygwin1.dll!getutent (called from uptime.exe!OEP+0x3c5 (0x4013c5
))

One-time INT3 breakpoint: cygwin1.dll!endutent (called from uptime.exe!OEP+0x3e6 (0x4013e6
))

One-time INT3 breakpoint: cygwin1.dll!puts (called from uptime.exe!OEP+0x4c3 (0x4014c3))

21

Глава 7

Взаимодействие во время работы

1) Нажмите ESC или Ctrl-C для отсоединения от запущенного процесса.
2) Нажмите пробел чтобы увидеть стеки вызовов для каждого треда и процесса.
Например: присоеденитесь к какой-нибудь запущенной программе с открытым окном с сообщением

(Message Box), нажмите пробел и возможно вы увидите, что привело к появлению этого окна.
Замечание: вывод стека вызовов пока плохо работает в tracer64.

22

Глава 8

Отсоединение от процесса

tracer использует функцию DebugActiveProcessStop() для отсоединения от запущенного процесса. Эта
функция присутствует во всех современных ОС базирующихся на NT, возможно, кроме Windows NT
и Windows 2000. Так что всё что tracer может сделать в этих ОС это убить процесс — извините!

23

Глава 9

Некоторые технические заметки

Архитектура x86 позволяет использовать до четырех прерываний одновременно. Таким образом, опции
BPF/BPX/BPM могут комбинироваться в любом порядке до четырех раз.

Возможность вывода стека вызовов предпологает что фреймы в стеке "разделены"указателем в
регистре EBP:

Смотрите также: Functions and Stack Frames
Это означает что любая функция которая не использует эту схему, будет исключена их стека вы-

зовов — непреднамеренно.
Замечание: в tracer64 эта возможность работает не очень хорошо.
Вся информация выводится в stdout а также записывается в файл tracer.log. Файл создается снова

при каждом запуске.
При загрузке или присоеденению к процессу, tracer проверяет все модули: главный исполняемый

файл и все файлы DLL загружаемые после. Он извлекает все символы из модуля включая эксплорты
DLL. Он также ищет файл FileName.MAP и пытается его парсить. Файл MAP имеет такой же формат
как то что делает IDA. tracer также ищет файл FileName.SYM и пытается загрузить символы из него,
трактуя его как файл символов из Oracle RDBMS: переменная окружения ORACLE_HOME должна
быть установлена для этого. tracer также ищет файл FileName.PDB (компилируйте вашу программу в
MSVC с ключом /Zi и вы получите отладочный файл PDB для нее).

Если DLL содержит экспорты только по ординалам, т.е., без имен (например, DLL-файлы MFC),
имя символа будет получено из ординала в таком формате: ordinal_<number>, например, ordinal_12.

24

http://en.wikibooks.org/wiki/X86_Disassembly/Functions_and_Stack_Frames

Глава 10

Известные проблемы

10.1 Windows 2000

Для работы под Windows 2000, библиотека Octothorpe должна быть скомпилирована с флагом
TARGET_IS_WINDOWS_2000.

Во-вторых, файл, dbghelp.dll из Windows XP должен находится в той же директории что и tracer.exe.

25

Глава 11

Заключение

Эта версия еще не была протестирована как следует. Так что будьте готовы к неожиданным падениям.
Я очень рекомендую проводить все эксперименты в виртуальной машине.

Если вы нашли ошибку, пожалуйста напишите мне: dennis@yurichev.com. Пришлите также файл
tracer.log и/или скриншот того что вывел tracer.

Я буду также благодарен любому комментарию или предложению насчет tracer.
Если вы чувствуете что ваш вклад в код стоит того чтобы быть включенным в мою версию, пожа-

луйста присылайте ваш патч.
Tracer так же много используется для иллюстраций в моей книге “Краткое введение в reverse

engineering для начинающих”, свободно доступной здесь.

26

mailto:dennis@yurichev.com
http://yurichev.com/RE-book.html

	Введение
	Посвящение
	Благодарности
	Общие опции
	Как в tracer задается адрес
	BPF: установка прерывания на исполнение функции
	Опция TRACE
	Примеры
	Простое использование
	Перехват некоторых Windows-функций для работы с реестром
	Подавить шумный сигнал
	Подавить диалоговое окно с сообщением
	Перехват вызовов rand()
	FreeCell
	Проверка ивентов и запись в лог в Oracle RDBMS
	Слежение за выделением памяти в Oracle 11.1.0.6.0 win32/win64
	Слежение за разбором SQL-выражений в Oracle RDBMS
	Игнорирование неподписанных драйверов
	Вывод памяти по аргументам функций
	Вывод памяти по аргументам функций и слежение за её изменением

	Примеры опции TRACE
	Трассировка строковых функций
	Трассируем quicksort()

	BPX: установка прерывания на произвольное место
	Примеры
	Task Manager: создать иллюзию что у нас 32 или 64 процессора
	Перехват развернутой (inline) функции strcmp()
	Изменение флагов перед тем как условный переход будет совершен
	Шутка в Microsoft Excel

	BPM: установка прерывания на обращение к ячейке памяти
	Примеры
	Слежение за обращением к переменным в Oracle RDBMS
	Проверяет ли программа целостность своего кода?

	Одноразовое прерывание по INT3
	Взаимодействие во время работы
	Отсоединение от процесса
	Некоторые технические заметки
	Известные проблемы
	Windows 2000

	Заключение

